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1. Introduction

Manv nonlinear dvnamical systems involving density waves
can be represented bv a system of partial differential
equations: a nonlinear equation of wave propagation and an
equation of evolution for a certain dvnamical variable. The
dvnamical variable may be a field as 1In the Schrodinger
equation for solitons, or mav be a fluid velocity as in the
Navier-Stokes equation of motion for compressible turbulence.
The general study of coupling between the kinetic energy of
turbulence and the wave energy belongs to the topic of acoustic
turbulence,!-2, while the escitations of turbulence b»ny wave
motions cause a density-induced turbulence. The latter 1is
treated here, because i1t occurs more frequently 1In the
atmosphere in view of the general presence of the iInternal
gravity wave and the mean density gradient.

a kinetic method is developed In order to include those
collective phenomena which are otherwise not evident. By group-
scaling, the master equation IS decomposed into a hierarchy of
scaled equations for the velocity distributions of decreasing
order of correlation times, representative of the macro-
evolution, the transport property and the relasation. A cluster
of distributions participates into the role of relasation for
the approach of the transport property to equilibrium. 1f the
cluster loses the individual i1dentity of velocity distributions
by moving together and behaving like a clump, an effective

medium can be assumed and a closure is found.
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By means of propagators that are modified to include the
damping from the effective medium, the eddy collision B
calculated as an operator, and the kinetic equation for the
macro-distribution IS derived. It contains a memory
representative of the collective behavior.

Based upon the kinetic equation. the transport theories
for the eddy diffusivity and eddy viscosity are developed. Thev
calculate the transport functions to govern the fTollowing
processes. & mean density gradient or a large scale gravity
wave may escite all the nonlinear mechanisms that control the
density waves, 1i.e. the coupling mechanism for the excitation
of turbulence and the cascade transfer from large toward small
eddies. Byv the more efficient coupling mechanism, the density
waves Teed energy iInto turbulence that cascades down the
velocity spectrum.

The transfer function is found to have two memory-loss
functions: one from the eddy collision as an operator, and the
other +from the Lagrangian correlation between the velocity
distribution and the fluid velocity. The two memory-losses
formulate a direct cascade toward small eddies and a reverse
cascade toward large eddies. respectively. The Tformer is
relevant to the coupling subrange.

The spectral Intensity in the coupling subrange are found

4

to have a k= law for the velocity and Tield <«(i.e. pressure
gradient) fluctuations. and a k°* law TFfor the density
Tluctuations.

The formation of sawtooths? in compressible turbulence can
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be seen 1In numerical computationé. vielding a spectral

intensity k2, in deviation from the Kolmogoroff iaw?’'® of
Yy g

incompressible turbulence.

2. Basic equations for the description of the microdynamical

state of density-excited turbulence.

The nvdrodvnamic variables are the Ffluid velocity 0. the

n -
density § and the pressure‘ﬁ . We write the density
~ Vo
Net,x) = Pee, x>/ @ (1
- - m

that is normalized by means of a constant density § , and write
-]

the thermal speed
) - A
c = (dp/dsn . (2)

a fluctuating variable is denoted by the symbol «”», with

It consists of the superposition of the ensemble average
(~»=(> and the deviation from the ensemble average, called the
fluctuation <. For such a decomposition, we may use the

operators A, X, such that

w3
h
>
1.
>
‘.ﬁ
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where 4-1 is the unit operator. The decomposition of a

fluctuating function Into an average and a fluctuation. as by
(4>, 1S known as the Revnolds decomposition in turbulent flows.

For a proper selection, we fTirst examine the following models
for the description of the microdynamical state of turbulence.

(ay Tull Navier-Stokes model

The Navier-Stokes system consists of the equation of momentum

3

- A} -
.. =
5 E; (5)

% R/&ﬂ + Vf/&
¢

RN

and the equation of continuity

)

)/\7+ V.)\A/

) v . =0 . (6)

N

The driving Tield E is due to the pressure gradient and 1iIs
given by the relation
~ A2 ¢
E =-2 vh N
- - «7)

between E and §. The differentials are

){-g b/At’ Y:-: 3/3)< .

-

and like other operators applyv to the functions which follow.

(b) _acoustic turbulence model

For describing the interaction between turbulence and
finite amplitude density waves, we can transform the Tfull

Navier-sStokes System in model (a> into the following simpler



momentum equation

—~

~
+

[N

BN

\)

l:)
il

A
E (8)

Z “ (A A
(%-—V-C%Vy = (9)
with
A T AnA
= b4 w
1= Y‘Z N..(f (10)

The relation between E and Q remains to be (7».

The equation of propagation #s obtained by cross
differentiations of (s> and (6> with respect to t and x and by
a subtraction

It Es to be recalled that the simple form of momentum
equation (8> s obtained by an elimination of N between the two
equations (3> and (&> of the full Navier-Stokes system. The
same simple form of momentum equation is valid for
incompressible turbulence as well with the divergence-free

condition

t<

{ &>
i\
o

(11

¢ Riemann®s model

In order to show the coupling between momentum and density
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in a concrete manner, we transform the Navier Stokes system

{
into the Riemann system in the form

A ~ - A
(Bt"' w-V)u:—C vw (12>
~ A A (
(bt4- u,-V)w:-CV'% ) 13>

TheRiemann variable
A
4 = cAu N (14)

relates™ and n, with a constant speed of sound c in isothermal
i ) i ) 8
gas and a variable speed iIn adiabatic gas.
Upon multiplying (12> and ¢13> bv 4 and &, respectively,

and averaging, we find the equations of evolution
w A VA= (15)
(Lifgrin)iy- W 1

‘<|:'/ A~(>t+c’_§.y)&>= ..\/\/, (16)

for the kinetic energy and the potential energy iIn homogenous

turbulence. The equations are coupled by the function

w = {i-E) (17>
with a net zero balance.
With the supply "by external source, the wave energy fTeeds
an amount w to the kinetic energy. The latter then undergoes an

internal cascade transfer from large into smaller eddies, to be



7

ultimatelv dissipated by viscosity.

(d> kinetic model

It 1s not difficult to verify that the two equations «¢5)
and (6> of the Navier-Stokes system are the first two moments

- . 9
of the master equation, written as

(e 0)fr =0

for the distribution function in the form
f(f; ":‘/)= N(f,x)S[v-a(t,x)] (19>
as the condition of the normalization. i.e.
A A
jd! {(f,x,v) = N['t/)_‘_) . (20)

The differential operator in the phase space t.x,v 1s:

L

z—(tﬂ‘lv )

- -

§ My

V-V 4

(t/’i) ) E

with -9/,
() wave.kinetic model

The present model uses the master equation (18> with the

condition

?&,,ﬁ,:} = S(v-—l:«,(‘(:,x)] B (22
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to replace the momentum equation ¢8> of model «n>, while
retaining the equation of propagation ¢9> and the relation (7>

for defining E—field-

Being homogenous and having the velocity v as an
independent phase variable, the master equation has lesser
nonlinearitv. It IS most equipped to treat the collisionless
transport properties for the wave-induced turbulence. It
provides a mechanism of collisionless damping as the result of
the 1nteraction between the velocity distribution and waves.
This property cannot be derived from the hydrodynamic approach.
among the kinetic methods, the wave-kinetic model 1is preferred,
because it describes more explicitly the iInteraction between
finite amplitude density waves and turbulence.

The transformation of the Navier-Stokes equation into the
master equation and the subsequent derivation of the Kkinetic
equation of turbulence have been attempted by ™MoninlO and
Lundgren.ll But thes encountered the difficulty of Kinetic
hierarchy 1like in Bogoliubov's theory-lZTo break the hierarchy,

we introduce a method of decomposition into many scales.

3. Multi-scale group decomposition

The nhyvdrodynamic equations and the master equation

discussed above describe the microdynamical state of



9

turbullence. They contain too many minute details which are not
suitable and necessary for the statistical treatment. We
introduce a course-graining procedure called group-scaling by
writing

Y- a - A (23a)

AT= AT A", (23b)
as an extension of the Revnolds decomposition (4>. The three

groups

are called the macro-group, the micro-group and the submicro-

group, respectively. while al is called the submacro-group.

The groups (24a)and the following groups

Z
Ao, Ai, A(),... (24b)

must conform to the scaling differential

T[°] T[/J .L.f' (25)

<

of decreasing duration of correlations, indicating a decreasing
coherence.

The three groups (21a> represent the three processes of
spectral evolution, transport property and relasation. The
latter governs the approach of the transport property 1o
equilibrium. The  decomposition gives the possibility of
exploiting the property of local quasi-homogeneity between any
two groups. This assumption implies that the iInteraction among
the groups are restricted to nearest neighbor group-pairs.

The fluctuating groups. as formed by the scaling operators
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(23), are denoted bv the superscripts
o 4 )
¢y , O (Y L (26a)
and
-]
(ry, (', " (26b)

in the open sequence and the closed sequence, respectively.

For completeness we should add the cumulative operators

A - A - A (27a)
Q
— [}
Ay A A =AY (27b)
— o
A, = A A - AT - A, (27¢)

giving the cumulative groups

(y , (O () . (28"

The deterministic transport properties and transport
functions, as shaped bv these fluctuating groups, are denoted

by the superscripts

[e] . ‘
O, <3f17, <’[] <’D (29)

with square brackets.

The Tluctuating groups may be Fourier transformed to find

thelr cumulative spectral distributions, as follows

o1 k
'fg‘<€ > =/dé' Fé-(k’/ (302>
0



(%

XA
+E")

Zk" /:E.-(/?_") (30b)

0:(,%”’ F(k™), (30¢)

with the i1nequalities

k. 2 kL” z kR > kx’ (31)

among the wavenumbers. They are independent variables or
variables of integrations. The limits of iIntegrations are the
demarcation wavenumbers of the three groups. The cumulative
spectral distribution obviously yields the spectral density
FE(k> of field fTluctuations by a simple differentiation with

respect to k.

4. Kinetic treatment of turbulence

4.1 Effective medtmm approximation for the closure of Kkinetic

hierarchy

In the statistical mechanics of many particles, the
master equation generates a hierarchy of man>-particle
distribution functions. Bogoliubov closed i1t at the triplet
distribution In an arbitrary manner.~ = Analogously, our master

equation IS expected to generate a hierarchvy oOF scaled
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equations by the group decomposition. We mayv choose a
closed sequence <¢24a) or an open sequence (24p>. The latter
contains more information and &S investigated here.

The scaling of our master equation by the operators of

open sequence yields the scaled equations

(4rL)f’=-Lfe2°- 2
Cert)gt - Ol ) 22 2,0

for the distribution of open groups, with the differential
operators

L, Li.--- (34)

from (21». The scaled equations have their eddy collisions

= e (], -

ZE—AL‘{ =G hj’)} (352>

° s 4 i= [’17 ©

Z=-AL{" =% {1} )
2 Cz]

ZLE__ALLEI#ZI__: 57-)({1}’ cer s

with the collision operators

[] (11 (2]
C; ’ 23 - (3 . T (36)

Through collisions each group is coupled to the next one

by developing a hierarchy. Pnysically speaking (32) determines
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the evolution of the velocity H? and of its kinetic energy, and
(33> determines the transport property by (35p>. Finally, the
cluster

e ool B (37>
organizes a relaxation process for the transport property to
approach Its equilibrium and s called the relaxational
cluster.

Two methods are available for the closure. Firstly, the

equation

(%.+A”La)f”':— L”¥2 (38)

without collision may serve as a closing equation. It will

calculate the collision by writing
Z % Z (39)

and

’ r o pe ”
L=-A Lf =§,{¥i}- (40)
The early cutoff neglects the collective behavior of
long range. Secondly, we realize that the problem of hierarchy
can be found in many nonlinear dynamical svstems. The familiar
ones are the hydrodynamics of long chain molecules!® and the
suspension of particles in Brownian movements.'* For these

15-16

systems, the concept of an effective medium that offers a
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Darcy damping has been introduced. Likewise, Heisenberg
postulated an  effective viscosity iIn his theory of
turbulence. Hence as the second method of closure, we shall
assume that the relaxational cluster of many distributions
represents In its ensemble a porous medium that &s frictional
and presents a similar Darcy damping. We shall determine this
damping by a self-consistent theory of collective phenomena.

To elucidate this physical picture analyticallv, we take

the moment of (33> to get the momentum equation iIn the form:

(Bt.+“fi-7)u-i = — Lbdfv(fi,+ ‘L°)+ Ei“" {i . (41>

- san e

The hvdrodynamic friction is found as

1

-

"= [dvv Z

[Av v B4

(~1
- Y &L ’

R

by (39 and ¢(40>. It is proportional to the coefficient of
damping 7i”? Although it assumes the same role as the Darcy
damping, it finds a self-consistent kinetic basis iIn (42).

For the vrole of relasation, it ES more iImportant to
retain the collective behavi’or than to discriminate the phase
individuality among the distributions iIn the cluster. Hence we
can replace the cluster by an effective medium with the property

(42>, and write the approximation
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[ . 1
oy = e

This simplifies (33> iInto the following

(bt-k'ci)fL:‘Li({*fo)\“ Z°, (44>

with the differential operator

s - (1] 4
,Ci = -yt (45)

5.2 Local quasi-homogeneity

The scaling differential (25> permits the assumption of
quasi-homogeneity among groups. Thus a low-order group of long
correlation time can be assumed to.vary more slowly than does a
higher-order group of shorter correlation time. BY appliving the
property of quasi-homogeneity at various levels, we find that
the 1Interactions between the nearest-neighbor groups are the
most pronounced. Under this circumstance, we can simplify (32)

and (4> Into

(“at.,.[_e)«fo_—_ - L.,? y Z (46a)

1 41,0
()t+[/1)‘f =‘L’f ' (46b)

5.3 Macro-kinetic equation

Tre integration of (46b) will be made by the intermediary of the propagator
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satisTies the differential equation

(2+4)U@tt) =0

€47)
The omission of z° in (46b> implies 9
Uk te)= Ukte) . (48)
By assumption (48> we may use the average propagator to
calculate
4 t 4 - i o
? =‘fdt A 'Le(‘t',f—'D) L(t-c)}¥} ’ (49)
o
L4 o
with -1 . By a substitution into (35b>, we calculate the eddy
collision
o ° 4 4
Z=-ALY

- A7 [TT Uty U961
- éﬂ.] {‘#o}
. Etfj{fo} , (53)

with the collision coefficient

4 t-o —
C»C ] / e <L'(f,’<, v) LP(i;t—-c}L'[f-'c)>
o

_ . ]:}/I é ) (51>

-—

and the eddy diffusivity
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. 1-00 —
D= (el Ut e (52
v 0 - -~

By the scaling differential
t> _CC(/]
the upper limit t has been put to o without altering the value
of the integral. The asvmptoticitv renders the diffusivity
deterministic.
Finally upon substituting (50> Into (46a>, we derive the

kinetic equation for the macro-distribution In the form

(b_t+[_+ L°)f°-—- -L‘f + C’[’]{f"} . (53a)

that can be rewritten as

- Py E’] o

2 ° °_—.—LF +3'D/[-3 (53b)
(t+L+L)f oL 27}

by ¢51>. The macro-kinetic equation possesses a memory as

belonging to the non-Markovian behavior through the operator
>}
5. Derivation of the hydrodynamic equations of turbulence from

the kinetic equation

Bv taking the first moment of the macro-kinetic equation

(53> and with the condition (22), we obtain the momentum
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equat ion
° e o 0 e °
2ut Auwvu' = E+ J
t... - - v had - {(54)

b 4
The hvdrodvnamic Ffriction takes the form

J-°= dgf/@tl]{’fo{( . (55a)

or
(-1 o
]°=f4vv - f-af} . (55b)
bv (51).
Since the macro-kinetic equation (53> IS an equation
espli it in t° without the involvement of f', its moments will

generate u’ and not u'. This is a consequence of the irrever-
sibility OF the macro-kinetic equation. This property has been
observed in deriving the momentum equation (54).
The equation of Kkinetic energv is obtained upon multi-
N (o] .
plving (34> by u and taking an ensemble average. It has the

-~

form

(o1 (o] (o1
with the following transport functions:

(i» The function

e gonste) £

is the rate of change of the kinetic energy.

(ii» The transfer function
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(O] o o
T = -<u.-] > (58)
governs the cascade transfer across the spectrum. The direct
cascade s a transfer toward the large wavenumbers, and the

reverse cascade IS a transfer toward the small wavenumbers.

(iii» The coupling function
[O-l L] -]
Wos (uhED

governs the coupling between the kinetic energy spectrum and

(59)

the density spectrum. It represents an excitation of the kine-
(o7

tic energy of turbulence by the density rarefaction, i.e. W o.

6. Transport theory of diffusion

6.1 Laarannian correlation
The diffusivity of') that #s basic to the macro-kinetic
equation s defined by (52) as the time integration of the

Lagrangian correlation

(eltx) W(tes) Eltc))
of 'E'—field fluctuations, whereif Is the propagator for the
evolution of E'(t-T> along the trajectory that IS perturbed by
the differential operator (45>.
By Fourier decomposition of E'(t,x) into the frequency "
and wavenumber k", we have

(v -k"x)

(60)

E(bn) - [[ddk” ek e
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The Lagrangian correlation has the form

CElex) Utts) Et=)> = 4 ( ke
Ez
-% e (e ck’ /f(f)>

L'(m”-é'fy)‘l:

X 2 (61)
A
where A (4 is the path-length in the time interval T . The

damping Y”1 as a differential operatorhas its Fourier form

1 _
Y - The first factor

1}

T (k) = ARl kIECar-4))

in the right hand side is the spectral function for the field

fluctuations, and

;X = r/z : (63)
TA\X
IS the factor of truncation in a Fourier decomposition that is
trnncated within a time interval 27 and a length interval 2x in

three dimensions. The spectral function is followed by a number

of esponential functions, called the components of the orbit

function.
The component

_ il k)T

/lv(w,'f:'z; v)= = T (64)

represents the linear streaming at velocity v 1In an unperturbed

trajectory. It defines the Eulerian correlation
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<E %, %) é: '/t—t, x-v 1:)> = [/ do’d fc ’ ilf,(]w,"@ “) zv (ks

- - (65)
and forms the diffusivity

]
//G‘w"@/ ”4 (w"/c”/fo/-z: {/a A T, v/
= 'Lﬂ‘(“’”"L’é"A (""”"7 5(w"- /‘,"’) (66)
in weak turbulence.

The component

(~
et
zﬁ&ﬁ)s 2 (67)
L
represents the effective medium. By
? =% +8ﬂ, (68>
the esponenEial function
L.k”/!?('c) 7 [&] "
<€ > :%gé,rj ’&, (f’t) (69)
can be written as the product of two components
dk?;ﬂfv)
'Btﬂ(é,’\'// 2 <& =~ (70>

W)= (820

They

represent the nonlinear streaming and the diffusive
relaxation,

respectively, along a trajectory that iIs perturbed
by turbulence.

We are dealing witn strong turbulence, so that the linear
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effect bv the orbital component
p \/‘D
’K(‘Uk’ )'\/ bk (72)

for streaming 1is negligible, escept when calculating the
collision (s51».

Bv collecting the components into the orbit function

e o) ad (em) dfhre) L) L)

we can write the Lagrangian correlation in the form:

Etor) We=)elb= o 4 e Ak 2)
by (61>, with

1, ol —tf 1
3 @) = x(ElkT £C4))
and , (75)
X =(m'a)

The diffusivity (52>, rewritten as

D&]= / 6&// (k” (76>

ol
-

has a correlation time

[1 @
T (kv)=[dc A5 v).

Here and in the following the integrals without limits are

T
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understood to estend from - tow.

6.3 Path dispersion

The evolution of the orbit Is governed by the dvnamical
equations iIn the form

) oy di) _
4 u,(‘(,‘ , < = E(t ; (78)
¢, - ) dt - 4-)

1

with i1nitial conditions

g(t1=t) =-f , ..L}(ti:t) ::\“/'/ é(ﬁ:t): E(t’:} ,

or, in the alternative form
d i <) 9 d V[t) A
/g( = - \_{[7;) y e = - E(t‘"D} - (80)
d< dv =
with the conditions
{(z=0)=0 V(z=0) = 0
- - (81
at T -o.
The path
N bvad ~
Q(r) = /Q(c) t g(‘;/ (82)
can be decomposed into an average
,E(t) -+ ET® (83)

and a fluctuation
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~ T T’
Q(t} = fd'c’/d'c” g(f;—-c"/ - (84)
- , A -

In stationary turbulence, the t-dependence can be neglected. By

(81>, the path iIs independent of v.

From (84) we calculate the variance

~ . T 2, ; '~ ~
<j(t/g(c)> =2 /4tr(_é_t3_é_t T4dT 3/<E[r/ g(r_rr/) (85)
the diffusivity by path dispersion

Kyte) = 4 2 (de) J0)
"C/-Bd'C’(‘E-T'/ <g6:) ‘Et(t—‘f7>‘ (86)

and the integral

Eﬂr"lsﬂ(t"} = —g@#f@
=étd'c'(-’,;‘cz—é-rz't * z—r’)@(tjg(r_vb : (87)

The asymptotic values are:

m

(i>» for large T

(& i)y 2 £7° Dlese

(88)

K(-c} g D(t-}m}‘cz
=4 = (89)

o ( / 3

v ’2 dt” -cl’ = (A.) ’
£k 'o[ /—.S} D (90)
with
o =1 KRSD (on
]> 3 “w e -
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(ii> for small T

k) L)y 2 £ <Er)ER))

(93)

Ke) 2 5% (E6) E6))
/'&’%0: fj‘c"}f('t'y—f—.' 1”4-. (94)

with

bz L KR (B ERD . 95>

4
&

[]
6.3 Orbital component + (k"<T/

Introduce the probability of retrograde transition

P(T,{‘Q_) ) (96)

with the condition of normalization

41 F{ —
f—- 'c,,g) - |0 (97)
to calculate

) (; ,-’ ”t (,/?,,
2 ](_’;”—c)ié : /KU)=/”’€ * “A“ﬂ/’('”fg/' o

The dispersion of path fluctuations is governed by the
following equation of transition
J f)(rf) = KPJ(-;): VA, [D(‘E,ﬁ/ . (99>
Z LAY -

where Ke is the diffusivity for the dispersion of path,
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rewritten in the form

K (t) = ‘L‘[d-c [’(:-7:/<E (K/E(—c-—‘c/> (100)

from ¢86».

By -Fourier decomposition with the formula

- cé”ﬂ (101)
17{1:’{} (275)3 falz( < />(1: 0}

we transform ¢99) into

(1

B_CP{'B,IE”/ = - l‘z‘k Kj (=) /J(‘c,é"/, (102>

and obtain the solution

P(//E (2—7;/ M/s[ 1’.%"/4'5 ;,g'c)l . (103)

The coefficient/(z_,y3 is found by the condition (97>, when we put

k"=0 in (101».

N

By comparing (98» with (101> and using <103> we find
i, k)
A (=~
- "/l v T L4 [//]
Q«f) - k%% "/ch: K (1;)]
-~ Y :}

13 ;) (104)
T /.

= ﬂ«[»(- co:D

Ll

with

]

(105)

& U R/4 [”] // [
W3 - L kR D + k"D
D 3 - - -

The asyvmptotic value (90» at large T is taken, in view Of
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the scaling differential

4

z>t?
¢

The diffusivity k) as belonging to the highest group,

regulates the relasation, and will be cal led the relasational

diffusivity.

6.4 QOrbhital component ‘%1](w_ 77)

BY tﬁj same procedures as for (104>, we calculate
sr (,k (‘B) vie, ’
k)= G D= ap{- k" [dt T, }

- % (106)
with MP( Mﬂ]t )

4 iy a

Mg = .{E g é : <§(‘D} E':'i('c/>
L
&

~

k//Z tugce, <E_L(T,) Ei(t)> ‘ (107>

The asymptotic value (94> at small T 1is taken in view of the

scaling differential
T< TS

6.5 Collision diffusivity ot

v collecting all the components

) tk vt
/LV(T, klf/ 2 -
- e (108a)
b T

l

1Y(T: ’S_,') E e-

(108b)
-

3 3
v, o\ = -4 T
h (xk”) =

(108¢c)
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¢

-mM, . T
ng'clz) = (4] (108d)

- - L/
of the orbit function {(éfz?lfrom (73Y, (72>, (104>, and (106),

we determine the correlation time

(AR j iz Ak v)
/dr, 4,k ) 4, (k)% (k'tM (k ’z)

m

(109)

for the collisional diffusivity, which can now be written iIn

the form

-1 (-]
=/al/5.'.€ [ T (é” v} (110>
-and -

1. [k £ 20 )
a tensor and a trace, respectively.

6.6 Relaxational diffusivity p{”]

From our basic kinetic"system (46> for fo and f4i,
that was used to derive the kinetic equation (53> and the
diffusivity 2['7, it IS seen that the submicro-group £ has no
esplicit gove:ning equation like (38>, but 1S represented by an
effective medium without identification of individual velocity
distributions. This means that the collisional diffusivity Ii[
and the relasational diffusivity of groups

Dm ; [[;’], . (111)

have to be treated differently. While the collisional
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di ffusivity pll s calculated by including aill orbital
components, as being based upon the propagator, the
relasational diffusivity oF various groups do not have their
individual Kkinetics and propagators, because they all form
part of the same effective medium. For this reason, the

diffusivities (111> are self-generating in the symbolic form

c"]: :D[”]Z/Df"f]} ) (112)

]
bv selecting the diffusive component «ﬁ (}/%)of the orbit

function.

More esplicitly, (112) IS

{#1 v @ w (71, 1 r0
Dz [de (k" (k) 4K

- -;-52/‘ “E®) <) a13)
with
. “13 (] -1
k" /db 29 = [1&£ -
( ) />< T ) [{é/¢%g _ (114%)
Upon substitution we obtain |
= &1 (%) f 4kF (k") 1
- $1t) [ ) (545
The use of (110>, (77> and (108c» has been made.

. o D[ ] C”’] _ _
The diffusivities and D have an i1dentical
integral structure, but with contingent limits of iIntegration

[/
(k",)> and (k , @)
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{~]

respectively, so that we can identifvlih] as a diffusivity D‘v
in the integrasg making (115> an iIntegral equation. For its
solution, we differentiate <115 with respect to the lower
limit of integration k", as denoted by an upper dot, and obtain

the differential equation

S UG OV (T

This 1is solved to give the diffusivity for relaxation in the

form

® 3
:D[’]= [_g_x-”% P(%)j”utqk’”-%’fﬂ(kh'):l ” . (117)
| 7 s E
The relasational diffusivity D”] forms the last link of the
chain of many diffusitivities. The approximate formula

provides with the necessarv relaxation process for the approach
of 3?] to equilibrium and for the closure of the sequence of

di ffusivities.

7 - Enhancement of turbulence by density waves
The momentum equation (54> can be written in the following

alternative form:
(5 -+xfp ° e °
T u./“ = . (118>

with the differential operator
=]

. [
.Ck 2 w7+ Y

LB g

3 (119)

a



31

The nonlinear term Cuw’ represents the steepening of sawtooth
waves. The steepening cannot Increase indefinitely to give rise
to a discontinuity iIn view of the damping by ?/{/] This damping
has a kinetic origin as due to the iInteraction between the
waves and the distribution function.

By considering the left hand side of (118> as the total

time derivative, we can integrate to obtain the macro-velocity

t - .
W’ = / d= U kee) £t<) . (120)
. =

and the diffusivity
¢ . - . (o]
<E°LL°>=/‘4’;<E/£/"} u’ué/{-z/?(i-tj>z 2 . (121)

The asymptoticity is obtained on the same basis as for D[J. The

-~

evolution operatorw“ determines the Lagrangian evolution of u°
under the differential operator (119). The same earlier
argument has been used for approximating w“by . The operator
— b

UK, being of nhyvdrodvnamic origin, does not involve V In the
ol =

perturbed trajectory, so that D has the same structure as

Dm

o

limits of integration. Thus we can write

(¢ _ n
from (110a>, but D IS independent of v and has different

D[°7= -%—-/éolqé/ g&’/ tc[ﬂ(k,) , (122)

with the correlation time
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Q] o )
7.;(1!’/5/41 “(&T;,v:o/ : (123)
0 -
The orbit function

Ak ve0) < 4 (k) £ ) 47Nk

and i1ts components

(1]
D G
{7 (k’/t) = < (125a)
_%9-.1:9‘
£'C°Ja"t/ = = - (125b)
13 3
vy, , - 47T
‘ﬁ, Gﬂ;} = e v (125¢)

are modified forms of (73> and (108). Here the diffusion time

[/ -

is W .| such that
D

1
c\jf’j‘?: ‘i“gz,-D / ’Cg

- V=0

’ (126)

and the diffusivity

S - 0]

,‘f‘o (127)

has a correlation time

] )

T. (k7

Y=o

with the orbit function
' (~1

"Ll = ’6 4 * . (129)

v=o v ]
The use of (105>, (110a), (109 and (73> has been made.

(128)

= j:;l; f(/‘,”'c/

V=0

-
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By comparing the trace of the diffusivity tensor (121)
with the coupling function (59) we find

[o ‘_a]
W ] =3 D . (130)

:Dca] = Thece ]?EOJ

(131)

This diffusivity governs the enhancement of turbulence from the
coupling between E° and u’. In the spectral sense there IS an

enhancement of the velocity spectrum at the expense of the

density spectrum by an amout W .

8. Transport theory of cascade

8.1 Twomemories of the transfer function

In sections 4 and 5, we have derived the macro-kinetic
equation (53> and the hydrodynamic equation of momentum (54>,

The eddy collision Is
1 °
DJ. ])//z{)ﬂf(t-t)}' ) (132)

by ¢s1) and the hydrodynamic friction is

‘.].L-" ::/dvu; 3 D;A]{% foﬂ—'l:/} y (133)
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by (55b).
o
Upon multiplying by u and averaging, we have the

transfer function (58> which we rewrite as follows:

[o]

o] . o (-1
T s—<t.<:-z_>=-/4fz(f 3%4)/%_‘7{ (-Ej'r)} , (134)

where

ff] 'le,z)‘——‘ <L27éf) ’fZJ:-t}> (135)

IS a Lagrangian correlation.
Like iIn (61> we use the Fourier method to transform (135)

and write

‘Pf-ﬂ(t: xv) = [ k) ‘@@2/{) )

(136a)

with the Fourier component

30 = 2w PRS-

By taking the moment, we have the spectrum

S Fr= 8w

and the energy
) 6] , bl [
4 Ji v 70 = [ 8 k)= &)

with the definitions

(136b>

(137b)
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Zm(él) = X @Wi/} ‘io(‘éy> (138a)
2[07(@1‘/ = /"lé’ Kb»l;.](f’) = <li,°z) (138b)

Bv substituting for the Fourier form of
1

D_ and Y[OJ

//L A
from (110a> and ¢(136a), we transform (134> iInto

tﬁ] ’ ” El] » 4 [oj ’ 2
T =-‘/0(440U? 4-(k)f‘17/\/‘4(k,/§/- (139)
For the sake of abbreviation, we 1i1ntroduce the partition

function
2 ‘L7 = |dv b ) k’ ,EOJAI . ,
Ty Jav w0 (LGP, [A RV, (./]}

The dependence of o]
Ak), AWKy, L)
on ~ - -

L1 ~01 vl [l (]
-C/_\_// Y ’ 7/ (A)P’“')p/ ,h?-i]/’" (141b2

IS understood by their definitions.

In order to simplify the expression (140>, we consider the
following properties:

(i» In strong turbulence, the streaming effect by v In h

- Y%
1s negligible, escept with the derivatives



I AW) == kA A )

, v=0 (142a)
=L kS
3 4
and
/Z/L é’ )
- . v=0/
{(k/ = : Jﬂ—k (..' - (142b)
and with similar derivatives of hik").
[°] ) [’3
(ii> Since T is finite and real, and so /90,'/,_

the integrand in <¢139) must be even. This rules out the
contribution by 2&

(iii> With the partial integration with respect to v, we
have

(o](y ao,/?) 0, /L]

V= (143)

0”

(iv> The transfer function controls the transfer of energy
across the spectrum. Consequently, the integrand of (139> must

retain v
By means of these properties, we can simplify the

partition function <(120>. We write

N:j =< (Nm ) /

and calculate the two components

N ) 2[4 e 276) [M,(6#7]

[7(15)[M (}e k”)] ' (145a)
(N[;Z, [ 4 ‘fm(k) [, 47],

- Z(k/ [ (ké)] 145b)

(143%)

LRY
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The two memory-loss functions are:
, W) \2 ’
(M. (k) = 4k 2.3, 4k )f - LGSR | 3n
P A S L P R A ~" Voo (146a)
(% -
and
/L) NS ) Ak “AG)AR)| 8, (146b)
{M (L/é/ = .bll. &/ ) :.L) ) ) N -
™ . d ~ % y=0 3 =T v
The Hloss of v iIn the orbit function makes the memory-loss
functions only dependent on the wavenumbers k*, k' as scalars.
It S seen that (144> describes the partition of the macro-
0
energy of turbulence (k'Y In the k"-space, while accounting
for the memorv losses along the two orbits. of orbit functions
4,(7) ana LG .
By the two memory Iosseéf the transfer function (139> can also
be divided Into two parts, as follows:
_I_l'O] (Tf°7 fﬂ)
= ( oo (T %. (147)

with

(74 =< [ 4000 £76) [ by, 64T e
(17, -tk 0, k7 &[4 PRl s

bv (145).

The transfer function is energized by the macro-energy If&%éy
and is diffused by the micro-field fluctuations of intensity
stkk"y. Since the process takes place in the Lagrangian space,

the two orbit functions cause two memorv losses.
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8.2 Direct and reverse cascades

By noting the scaling differential (25> and by making use
of the properties of the partition function mentioned above, we

reduce (146ay and (146b> 1Into

(uy 2T AT o) S, (1492
P/"/',L(kfkb)]eg’é-é"L‘LZ/L(/!,”'Q ‘\::0/ §}L. (149b)

We can see that the loss of memory is effectively caused

by the orbit function

A(k <, v=0) (150a)

as the result of the perturbations of the trajectory carrying

the field _
Uit-=)EE-T)

for shaping the diffusivity DQS. The other orbit function

“(k/x, v=0)
/ ’

- (150b)
merely serves to provide a macro-gradient of a spectrum

e Ek) .

by the transformation

yAk)

-~

= - b T4k T, v=0)

v=0 - (151)

The substitution of (149> Into (148> leads to the transfer

function In two components:
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(Tﬁya:‘/]al,/zotk" ](}i)l! Cgcj(k)/d'ft ’{\(‘é TV:O/ (152a)

(152b)

(TIOQ‘ =//"'é’dﬁ‘ k" T (](/L/ ‘CC.“(k')j(;d‘D T ‘f(k,'g.\f:o}‘

with , -,
JC] = trace AC] .

We write ¢152> in the following concise form

(1%) - K& (1533
o] P]
<T() > ’ (153b)

after a rearrangement by separating the variables k*, k". The
governing functions are: the vorticitv function
R (W)
- AE R ) TR
- [ RSB
- zj;k’d_k’ k2 E (k) (154)
the eddy viscosity as a scalar trace
&L [ A G W)
-;-f:lk" A, G'w(k'z (155)
ke

it

]

and the eddy damping

A7 =ik kT O G (v

=2 /z"‘F(k"/ GO, (156)
!

The modulation function
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f,] ” oo 7/ E/] p? 3
G (k)-—-] it T* /((L,"c,x-fojs[‘(_;, (-]
0 (157)
]

finds a modulation time 7;1(gﬁ .

The orbit function h(k", T, v=0> represents a damping as
the result of the perturbations of the trajectory. It
determines the relaxation for the approach of the diffusivity

1 e - _ _ _ n n
D ~ to equilibrium. Likewise it determines. by (157), the time
1
tM
and the damping coefficient (156> to equilibrium.

of modulation for the approach of the eddy viscosity (135)

The two parts (152a) and (153b> of the transfer function
contain the second moments (134> and (156> oF the spectral
distributions with limits of iIntegrations

(o,k> and (k,®™),
respectively. The +two moments gain their importance for large
and small values of k. respectively. Hence we can conclude that
the two parts (153a> and (153b> of the +transfer function
control the direct cascade near a sink at large k and the
reverse cascade near a source of small k. respectively.

In his theory of i1ncompressible turbulence, Heisenberg has
proposed a transfer function in the form of a product of the
vorticity function with the eddy viscosity5 His formalism was
based upon the empirical concept of mixing-length. In addition,
he proposed an empirical formula of eddy viscosity on the basis
of dimensional consideration. Here we have developed a kinetic
theory oOfF transport for the transfer process. Our analytical
formula of transfer(l1s3a) by direct cascade supports his

phenomenological formalism. Our theoretical result of eddy
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viscositv (155> IS based upon the macro-kinetic equation and
has undergone the process of relaxation, modulation and memory
losses. It is obviously more complicated than Heisenberg®s
formula.

En analogy with the derivation of the kinematic viscosity
by the Kkinetic theory of gases, the derivation of the eddy
viscosity needs the kinetic equation as an essential basis.
This explains why a purely hydrodynamical method, e.g. the
direct interaction approximation,1?7 cannot produce an eddy

viscosity.

8.3 Modulation function

-1
The modulation function G <kx™> in (157> controls the

eddy viscosity (135> and the eddy damping (156>, and IS
calculated by the second moment of the orbit function of three
components [”
Wb, = A (k) 4 (b7) (ko)
R VAR A M)
of time scales as given bv the i1nverse of the frequency scales

(-1 +1
)L ’ Q% ’ 41&; - (159D

respectively. Each component could form its own individual
modulation. An approximate evaluation of the second moment of
(158> gives the composite modulation, as defined bv (157> with

’

a time scate’a1 such that
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1-1 24 pﬂz é 3 (160)
T x [’/JZ
o = E, 5T f

IS the resultant of the frequencv scales (159>. The numerical
coefficients are adjusted In such a way that the formula (160)
gives the esact values of the three individual modulation
functions at the three- scales (153>. Thus the formula (160> for
the composite modulation s an interpolation of three esact

components.

8.4 ldentification of the effective medium

From (153a>, we see that the eddy viscosity KP] describes
the turbulent property of the medium of small eddies that carry
the E'—field Tluctuations.

On a phenomenological basis, we can conceive that this
medium offers a friction

. 2N

T = K (161)

~—

to the evolution of u , and causes an energy dissipation
r<fl u_ V > ~ h: ﬁ>
= - K[/] RE’] (162
to the energy balance in homogenous turbulence. Since the
energy dissipation (162> IS the result of iInteraction between
the micro-group and the macro-group, we see here that the
physical picture of cascade emerges. Bv pursuing the comparison

of (161> with (42>, we can identity

7] ] 4| ]
Y[ - K v, )2,’[ --R°K (163a)
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for the micro-group, and similarly for the submicro-group

C//] [~1 f”] ”
Y = K vz', Yk =-£’.2K[]- (163b)

Recall that the realization of a direct cascade requires a
transfer of large wavenumbers iIn a transport of the gradient
tspe. Both conditions are met by the effective medium that
represents the cluster of high-order distributions.

The identification of the effective friction eddy
viscositv iIn (163> connects the concept of effective medium to

the Kkinetic basis of cascade process In a self-consistent way.

9. Equation of state of turbulence

9_1 Local nonlinearity

The density-induced turbulence 1is governed by the

following system of two differential equations:

~ A A
() +“.V)“- = E (164)
t - /. -
( 2 220N >
R A V) =N
t Y _ (165)
with the driving forces
Pal "Z A
E =-c¢ Vl/wN
- -~ (166)
and
”~ ,\A
= VV:NLLU. ,
(167)
from (8>, (9>, (7> and (10), respectivelyv.

The system describes the microdvnamical state of the
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interaction between +turbulence and finite amplitude density
waves. The Navier-Stokes equation ¢164> 1S obviously nonlinear
by rts advection 4-vi, and is also nonlinear by the driving
force E. The latter nonlinearity arises from the wave
propagation by the definitions (166> and (167>. Such a form of
nonlinearity also appears in soliton dynamics and is called the
modulational nonlinearity.18 1t #s non-local (in time) as 1In
(165>, or s local iIn the form

Es-ézV,@»ﬂ‘/=J—V:Né§ - (168)

A

N

as obtained bv assuming that the temporal derivative is small
as compared to the spatial derivative. This is the case with
the strong turbulence In cascade process.

By taking the divergence, we transform (168> iInto the

following Poisson equation
A A
VE =Yy +7 - Ndd

N =
£ vd vq = N (169)
7o = N
The approximation ¥s made bv assuming that the transverse modes

_ n .19 _
of turbulence are dominant iIn wave scattering. The Poisson
equation clearly indicates the locally nonlinear character of
the source iIn driving the turbulence.

An equation of state 1iIs obtained, Tirst iIn the barotropic

form (7> for relating E to ¥ through the speed of propagation
(2>, and then in the Poisson form (169> for relating £ to I by

assuming a transverse scattering of waves.
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9,2 Scattering function r°

The scattering function of the macro-group iIs
6 L]
= An

0 . (170)
.V. . . - . ° -o ’
AL ERVIR TP

ov (163>. The iIntensity is obtained by the mean square value

</1°z>=ﬁ(‘;.wz v:.Lf; —<V5-u: V‘_cf;)}[g{ u,; Y_a; ~Fu v u°>]. (171>

The differential v does not extend beyong the immediate function.
For

[ o

<V/‘“: Vo fu, L)

(172

we shall decouple Into double products by approximation. The

approximation s legitimate when it does not deal with a

process, as is the case with ¢(170>. We find
°Z\ W o o o ° (173>
4 v.Q.
A2 (T4 7,0 gul val S,

Nt = z///[«(é’df"ai/e'”dk " ;/5.’5 ”;kb.'"aé/é"’

m

X <u:(f'/bjz(/i?> <u;( ”) %:(é/>' (174

or

by Fourier transformation, where X 1is the factor of truncation

of the Fourier decomposition.

A homogenous turbulence has the following property
<“:(§) u;(g» = '}L )‘<u°(f«)“o(‘/f}> 8;/ 5‘({_3,"'@7, (175a)

and similarly, we have

§



<UL (k}u(k')} £ u,(k /u(k"?)«f J(.é / (175b)

By the properties (17 », we can simplify (173> iInto

<_)1.Z> - .ZL- Rf"]’

7 . _ n
where R s the vorticity function as defined by (154>.

(176D

By a Fourier transformation of (168> and with the aid of

(176>, we obtain
ICB fol2

2
) RE B—R -, 177>

1 _ . _ ° n
where R IS the vorticity function of u -fluctuations, as

defined by (154> and

(o] k ;1,2 ,
RE = zfoobkh Ié(k)

|

(178>
IS the vorticity function of E)—fluctuations-
We convert (177) into , the snectral form._ hv writing
/kdk" EeF(R") = 2 x¢ éAk"é"zF(/é/ o b2 E, &
(2] E =%- ?édk%‘”z/‘-(k}/&dk I F(k) (179)
The 1nner integralsaccentuates Iarge values of k' near k", and

as a First approximation can be written as

k”} F. (k/ . (180)

yielding the relation
o L4S )t
2 (A" hER) 2 —g-‘-fdk *O[RGRT] (s>
o}

or, after a differentiation,
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Fl) =2 K[E0)]

The approximation is valid for small k¥ and even smaller k" as
in the case with the coupling subrange.

The relations ¢(177> and (182) are the equation of state iIn
the s-space and k-space. respectively.
10. Spectrum of the enhanced turbulence.

10.1 Energy sSpectrum in the coupling Subranne

In the coupling subrange, the turbulent energy is enhanced
at the espense of the potential energy. The governing equation

of energy balance s (130>, rewritten as

° C’] C°]
3 EF] K (183a)

or ] o /3 7]
fou-z'F(é’)‘C ) = fdh EG) [ ®)]

(183b)

by (1303, (122) and (155), where gb] has the dimension of

(time) 2

The equation (183a> describes the balance between the
coupling function as a spectral source and the cascade transfer
as a spectral sink at the Qlarger end of the spectrum.
Therefore. the formula (1s3a» of the transfer by direct cascade
IS taken.

An  Inspection of (183b>» reveals that any function having
the dimension of time is independent of k.

For describing the energy flow, we differentiate (183a>

with respect to k, as denoted by an upper dot, to get
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NG ‘1 (o : 7
3DP . KRR KYR
[‘,7 * (0] R[°] l.([,]
K R (“- Rfo? KE’] (184)
~ kY1507
x K7'g

in view of small RP{ In terms of the spectral distributions,

€184) is, by (183b),

- - @ / 3
B )T - REGK) 5 £ [ 4k EED [T )T
orl after a rearrangement, /!
2 ® E) ” v ’ 3 @ﬂ -2
3-44‘4 ) (g, bl = [E®)< /e )] 672 L
The factor 0]
2RO

naving the dimensions of (time)
leads to

IS independent of k. Another

differentiation of (185>

Fc;.('é) = tu-z k_3 ’

tL_—z =3 .‘::O]/(Tl‘:q)s (187>

IS again iIndependent of k.
i ] _ i ) A
Slnce’E iIs the time of steepening of sawtooth, and EQ is
the balance

(186)

The factor

the modulation time for the cascade of energy,

the two processes gives the duration t, Tfor the

between
enhancement of turbulence.

Bv the definitions (123> and (157>, we can write

0

t:=§- szl'c -* 'ét(")‘ /r’}t '&(F)l . (188)
o Y;D o] K:

as related to the normalized second moment of the orbit

function'A(t)(
Z‘=0
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2> Spectrum OF field and densitv Fluctuations in the coupling

_ubrange
By the use of the equation of state (182>, the relation
(165b> and the spectral result (186>, we derive the spectral

distributions of field and density fTluctuations as follows:

"

_g_"t '¢,k‘3 (189a)
7 7]

F (k) = _g’_(ctu)d‘ﬁ;s. (189b)

N

E (k)

10.3 Spectral _intensities

By introducing the spectral intensities

/]2

C fd/t F(k) (190a)
v12 )
E/z =2 4“&, E(’é} (190b)

]

N:u = 2 f:"‘k' Ev (¥) (190c)

the results (186>, (18%a> and (189b> Tor the spectral densities

can be converted into the following :

D]Z
t ’/t (192a)

-2

t T 4°

“w (192b)

EEYC A

(12
Ek =

\n]ﬁo

(192c)
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It Is to be noted that the spectral results for
velocity and field fluctuations are i1ndependent of c, while the
spectral results for density fluctuationswill depend on c. For
the density spectrum, c enters as a constant parameter,
implying an isothermal propagation.

The coupling subrange s located between the production
subrange and the inertia subrange, with the mean density
gradient and the rate of energy dissipation as the respective
external parameters. It possesses the two parameters: the
constant speed of propagation in isothermal gas that enters
into the equation of propagation as en external parameter, and
the constant time scale of enhancement of turbulence as an

internal parameter.

11. Discussions and conclusions

In 1ncompressible turbulence, the agent of production of
turbulence is usually the mean gradient of the velocity itself.
However, 1if the density mayvy fluctuate. such as In convective
turbulence, acoustic turbulence, density -induced turbulence,
and other types of compressible turbulence, the turbulent
motion may iInteract with the large- amplitude density waves. If
the turbulence motion s intensified by the density waves, we
call it density-induced turbulence. The processes are as follows:
often a mean density gradient is more likely to be found than a
mean velocity gradient. It excites all the nonlinear mechanisms
that controls the density waves, i.e. the density-velocity

coupling among large eddies. and the cascade transfer from
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large toward small eddies.

If the coupling by large eddies IS more intense than the
transfer, the density fluctuationswill mainly go to feed the
kinetic energy fTor 1ts continuing cascade toward smaller ed-
dies, and consequently the density spectrum will fall rapidlv.
At 1Increasing wavenumbers. the tail portion of the velocity
spectrum S governed by the balance between the cascade trans-
fer and the viscous dissipation.

We need a mathematical model to describe these processes
indensity -induced turbulence. In Section2 , we have named
several mathematically equivalent models. The Navier-Stokes
model <(a» and i¥ts kinetic correspondent (d> are too formal for
the purpose. The Riemann system (c> has the merit of illustra-
ting the build-up of the kinetic energy of turbulence at the
expense of the wave energy. By the symmetry, the system does
not distinguish the different physical roles from the two
equations. The acoustic turbulence model (b> that has clearly
put the propagation into evidence s more suitable to treat the

density -induced turbulence. In order to include those transport
properties which take their origin from the velocity distribu-
tion of eddies, we choose a kinetic approach in the wave-
kinetic model <(e>, upon replacing the Navier-Stokes equation of
motion by a master equation. By group-scaling, we decompose the
master equation iInto scaled equations Tfor the distribution
functions of manv scales. The closure is found by considering
those groups which form a relaxational cluster as an effective

medium having self-consistently the same transport property as
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the cluster itself. as a result, the kinetic equation for the
macro-distribution can be used to derive the transport func-
tions !coupling function and transfer function®, the transport
Properties (eddy diffusivity and eddy viscosity). and finally
to find the spectral functions. The spectral intensities In the
coupling subrange are found to have the power law k-2 for the
velocity and field fluctuations and the power law k-4 for the
densitv fluctuations. This s the first time that a Kkinetic
equation for the singlet distribution (macro-distribution) can
determine the spectral structure of turbulence without the need

of the pair-distribution.
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